// Calculation Program for calculating shape of a flower with the use of Cardioid (c1_independent_angle), Sep. 27, 2012



// file name: flower_c1_independent-angle.c



#include< stdio.h>

#include< math.h>



void main(void)

{

	double a,pi;// "a" is the constant of the original Cardioid, "pi" is the pi

	double r,f;// the moving radius and the phase angle [radian] of a heart curve respectively

	double fmin,fmax,df;// the minimum, maximum values and increment of the phase angle "f" respectively

	double x,y;// the orthogonal coordinates of a heart curve (used as a petal)

	double rr,ff;// the moving radius and the phase angle of a petal after contraction or expansion respectively

	double ffmin,ffmax;// the minimum and the maximum values of "ff" respectively

	int n;// a desired numbers of petals of a flower

	double t;// the phase angle [radian] of Cardioid before the conversion

	double b,c;// conversion coefficients from Cardioid to a heart curve

	double d;// expansion coefficient of Cardioid  in the length direction

	double e;// the radius of a center circle

	double k;// deformation facter of width of a petal

	int i,imax,j;

	double xx[20001],yy[20001];// Take care of the upper limit of storage memory capacitance.

	double t1, t2,fff;// intermediate variables



	double p;// phase angle of the center circle

	double dp;// increment of p

	double beta;// an arbitral width of phase angle with which each petal contacts to the center circle

	double dbeta;// increment of "beta"

	float l;// the correction factor for "beta" ( 0 < l )

	int m;// counting number of "dbeta"

	int nf;// devision number of "f" and "beta"



	FILE *fp;



// setting of the constants

	pi=3.14159265;

	a=1;



	b=2;

	c=0.5;

	d=1;

	e=0.4;

	k=1;



	printf("Input a desired numbers of petals of a flower in natural number. \n n=? ");

	scanf("%d",&n);

	printf("n=%d\n",n);

	printf("\n");



	printf(" 0< p< 1 in the case of no overlap of petals, and 1< p in the case of overlap of petals. \n l= ? ");

	scanf("%f",&l);

	printf("l=%f\n",l);



	beta=2*pi/n;// fundamental equivalence

	beta=l*beta;// corrected width of phase angle with which each petal contacts to the center circle



// setting of the other parameters

	fmin=-pi/2;

	fmax=3*pi/2;



	nf=400;



	df=(fmax-fmin)/nf;// plotting interval of phase angle "f"



	dbeta=beta/nf;// increment of "beta"

	dp=(2*pi/n)/20;// increment of "p"



	fmin=fmin+df;// modification of "fmin"

	fmax=fmax-df;// modification of "fmax"



	ffmin=pi/2;

	ffmax=pi/2;



// pre-calculation (obtaining the maximum and the minimum angles of the shape of heart curve)



	for(f=fmin;f<=fmax;f=f+df) // the sweeping of the phase angle "f" in respect to a single petal

	{

		if(f<=-pi/2)// conversion of the phase angle from Cardioid to a heart curve (start)

		{

			t1=0;

		}

		else

		{

			t1=b*sqrt(f+pi/2);

		}

		if(f>=3*pi/2)

		{

			t2=0;

		}

		else

		{

			t2=b*sqrt(3*pi/2-f);

		}

		t=t1-t2+(1-b*sqrt(2/pi))*f+b*sqrt(pi/2); // conversion of the phase angle from Cardioid to a heart curve (the end)



		r=a*(1-sin(t)); // relationship between the moving radius and the phase angle of heart curve



		x=r*(1+c*sin(f))*cos(f); // deformation of heart curve and expression into the orthogonal coordinates

		y=d*r*(1+c*sin(f))*sin(f)+2*a*d*(1-c); // deformation of heart curve, displacement of the origin point in the coordinates and expression into the orthogonal coordinates



		rr=sqrt(x*x+y*y);// calcuration of the moving radius after conversion



		if(x==0) // calcuration of the phase angle after conversion

		{

			ff=pi/2;

		}

		else

		{

			if(x>0)

			{

				ff=asin(y/rr);

			}

			else

			{

				ff=pi-asin(y/rr);

			}

		}

				

		if(ff>ffmax){ffmax=ff;}

		if(ff< ffmin){ffmin=ff;}

	}



	ffmax=k*(ffmax-pi/2)+pi/2;

	ffmin=k*(ffmin-pi/2)+pi/2;



// execution of main calculation



	i=0;



	for(j=1;j<=n;j++) // the sweeping of n numbers of petals

	{

		m=0;

		for(f=fmin;f<=fmax;f=f+df) // the sweeping of the phase angle "f" of a single petal

		{

			i++;

			m++;



			if(f<=-pi/2) // conversion of both of the moving radius and the phase angle from Cardioid to a heart curve (start)

			{

				t1=0;

			}

			else

			{

				t1=b*sqrt(f+pi/2);

			}

			if(f>=3*pi/2)

			{

				t2=0;

			}

			else

			{

				t2=b*sqrt(3*pi/2-f);

			}

			

			t=t1-t2+(1-b*sqrt(2/pi))*f+b*sqrt(pi/2); // conversion of both of the moving radius and the phase angle from Cardioid to a heart curve (the end)



			r=a*(1-sin(t)); // relationship between the moving radius and the phase angle of heart curve



			x=r*(1+c*sin(f))*cos(f); // deformation of heart curve and expression into the orthogonal coordinates

			y=d*r*(1+c*sin(f))*sin(f)+2*a*d*(1-c); // deformation of heart curve, displacement of the origin point in the coordinates and expression into the orthogonal coordinates



			rr=sqrt(x*x+y*y);// calcuration of the moving radius after conversion



			if(x==0) // calcuration of the phase angle after conversion

			{

				ff=pi/2;

			}

			else

			{

				if(x>0)

				{

					ff=asin(y/rr);

				}

				else

				{

					ff=pi-asin(y/rr);

				}

			} // conversion of both the moving radius and the phase angle from Cardioid to a heart curve (the end)

			

			ff=k*(ff-pi/2)+pi/2;// expansion of the width of a single petal

			fff=(2*pi/(n*(ffmax-ffmin)))*ff+pi/2+2*(j-1)*pi/n-pi*pi/(n*(ffmax-ffmin)); // conversion of the phase angle from a single petal ("ff") into the whole petals of a flower ("fff")



			xx[i]=rr*cos(fff)+e*cos(2*pi*(j-1)/n+pi/2-beta/2+m*dbeta);

			yy[i]=rr*sin(fff)+e*sin(2*pi*(j-1)/n+pi/2-beta/2+m*dbeta);



			printf("i=%d,x=%f,y=%f\n",i,xx[i],yy[i]);

		}



        	if(l< 1) // connecting by an arc curve to fill a gap between adjacent petals (start)

		{

			for(p=2*pi*(j-1)/n+beta/2;p< 2*pi*j/n-beta/2+dp;p=p+dp)

			{

				i++;



				xx[i]=e*cos(p+pi/2);

				yy[i]=e*sin(p+pi/2);



				printf("i=%d,x=%f,y=%f\n",i,xx[i],yy[i]);

			}

		}

		else

		{

			for(p=2*pi*(j-1)/n+beta/2;p>2*pi*j/n-beta/2+dp;p=p-dp)

			{

				i++;



				xx[i]=e*cos(p+pi/2);

				yy[i]=e*sin(p+pi/2);



				printf("i=%d,x=%f,y=%f\n",i,xx[i],yy[i]);

			}

        	} // connecting by an arc curve to fill a gap between adjacent petals (the end)

	}

	

	imax=i;



	xx[imax+1]=xx[1];

	yy[imax+1]=yy[1];



// writing the calculated coordinates data into a textfile

	fp=fopen("flower_c1_independent_angle.txt","w");

	if(fp==NULL)

		{

		printf("FILE OPEN ERROR\n");

		}

	else

		{

		for(i=1;i<=imax+1;i++)

		{

			fprintf(fp,"%f,%f\n",xx[i],yy[i]);

		}

		fflush(fp);

		fclose(fp);

		}

	printf("end\n");

}// the end of the program





RETURN